Training of spiking neural networks based on information theoretic costs

نویسنده

  • Oleg Y. Sinyavskiy
چکیده

Spiking neural network is a type of artificial neural network in which neurons communicate between each other with spikes. Spikes are identical Boolean events characterized by the time of their arrival. A spiking neuron has internal dynamics and responds to the history of inputs as opposed to the current inputs only. Because of such properties a spiking neural network has rich intrinsic capabilities to process spatiotemporal data. However, because the spikes are discontinuous 'yes or no' events, it is not trivial to apply traditional training procedures such as gradient descend to the spiking neurons. In this thesis we propose to use stochastic spiking neuron models in which probability of a spiking output is a continuous function of parameters. We formulate several learning tasks as minimization of certain information-theoretic cost functions that use spiking output probability distributions. We develop a generalized description of the stochastic spiking neuron and a new spiking neuron model that allows to flexibly process rich spatiotemporal data. We formulate and derive learning rules for the following tasks: - a supervised learning task of detecting a spatiotemporal pattern as a minimization of the negative log-likelihood (the surprisal) of the neuron's output - an unsupervised learning task of increasing the stability of neurons output as a minimization of the entropy - a reinforcement learning task of controlling an agent as a modulated optimization of filtered surprisal of the neuron's output. We test the derived learning rules in several experiments such as spatiotemporal pattern detection, spatiotemporal data storing and recall with autoassociative memory, combination of supervised and unsupervised learning to speed up the learning process, adaptive control of simple virtual agents in changing environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised learning based on temporal coding in spiking neural networks

Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is...

متن کامل

Comparing Evolutionary Strategy Algorithms for Training Spiking Neural Networks

Spiking Neural Networks are considered as the third generation of Artificial Neural Networks, these neural networks naturally process spatio-temporal information. Spiking Neural Networks have been used in several fields and application areas; pattern recognition among them. For dealing with supervised pattern recognition task a gradientdescent based learning rule (Spike-prop) has been developed...

متن کامل

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

Supervised Training of Spiking Neural Networks with Weight Limitation Constraints

There has been much evidence to show that single precise spikes, transfer information among biological neurons. Based on this encoding scheme various spiking neural networks have been proposed to solve computational problems. One such algorithm, a spike time error-backpropagation algorithm for temporally encoded networks of spiking neurons, has been successfully applied to the problem of comple...

متن کامل

Spatio-Temporal Backpropagation for Training High-performance Spiking Neural Networks

Compared with artificial neural networks (ANNs), spiking neural networks (SNNs) are promising to explore the brain-like behaviors since the spikes could encode more spatiotemporal information. Although existing schemes including pretraining from ANN or direct training based on backpropagation (BP) make the supervised training of SNNs possible, these methods only exploit the networks’ spatial do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.04742  شماره 

صفحات  -

تاریخ انتشار 2016